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Abstract

Associations of prenatal exposure to perfluoroalkyl substances (PFASs), ubiquitous chemicals 

used in stain and water resistant products, with adverse birth outcomes may be confounded by 

pregnancy hemodynamics. We measured plasma concentrations of four PFASs in early pregnancy 

(median=9 weeks) among 1,645 women in Project Viva, a Boston-area cohort recruited 1999–

2002. We fit multivariable models to estimate PFAS associations with birth weight-for-gestational 

age z-score and gestation length adjusting for sociodemographic confounders and two 

hemodynamic markers: 1) plasma albumin, a measure of plasma volume expansion, and 2) plasma 

creatinine, used to estimate glomerular filtration rate. Perfluorooctane sulfonate (PFOS) and 

perfluorononanoate (PFNA) were weakly inversely associated with birth weight-for-gestational 

age z-scores [adjusted β=−0.04 (95% confidence interval (CI): −0.08, 0.1) and −0.06 (95% CI: 

−0.11, −0.01) per interquartile increase, respectively]. PFOS and PFNA were also associated with 

higher odds of preterm birth [e.g., highest vs. lowest PFOS quartile adjusted odds ratio = 2.4 (95% 

CI: 1.3, 4.4)]. Adjusting for markers of pregnancy hemodynamics (glomerular filtration rate and 

plasma albumin), to the extent that they accurately reflect underlying pregnancy physiology, did 
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not materially impact associations. These results suggest that pregnancy hemodynamics may not 

confound associations with birth outcomes when PFASs are measured early in pregnancy.
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Perfluoroalkyl substances (PFASs) are a family of synthetic compounds composed of a 

carbon-fluorine backbone. Many PFASs are resistant to oil and water and therefore useful in 

the manufacture of stain-resistant products (e.g., carpets and fabrics), nonstick coatings, food 

packaging and a broad range of other applications. These properties can also make them 

resistant to degradation and persistent in both the environment and in the body with half-

lives in humans of approximately 3–5 years (1).

Diet and the indoor environment are common sources of human PFAS exposure, and PFASs 

are universally detected at varying serum concentrations in the U.S. population, as reported 

in the National Health and Nutrition Examination Survey (NHANES) (2, 3). PFASs can 

cross the placenta, and animal and human studies suggest that some PFASs may be 

developmental toxicants (4, 5).

A number of epidemiologic studies report associations of prenatal exposure to two PFASs, 

perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), with adverse birth 

outcomes, particularly reduced fetal growth (6–19), and a recent meta-analysis estimated a 

reduction in term birth weight of 18.9 g (95% CI: −29.8, −7.9) per 1-ng/mL increase in 

PFOA (20). However, other studies have reported null PFAS-birth weight associations (21–

25).

There has been some concern that associations of PFASs with adverse birth outcomes are 

attributable to hemodynamic changes that occur during pregnancy (26, 27). Plasma volume 

expands at approximately six weeks gestation in response to decreased mean arterial 

pressure, increased cardiac output and systemic vasodilation (28); this results in serum/

plasma dilution of PFAS concentrations. In addition, glomerular filtration rate (GFR) 

increases at six weeks gestation (28), which may accelerate PFAS excretion, as 

demonstrated by studies showing higher PFAS concentrations in individuals with reduced 

GFR (29, 30). As plasma volume expansion and changes in GFR may also be related to fetal 

development, including growth (31), these mechanisms could potentially induce a spurious, 

non-causal association between PFASs and birth outcomes.

To address these concerns we examined associations of early pregnancy PFAS plasma 

concentrations with birth weight-for-gestational length z-score (fetal growth), and 

gestational length, adjusting for confounders, including pregnancy hemodynamics, in a 

large, well-characterized longitudinal cohort of women who were pregnant during years that 

coincided with peak U.S. population exposures to PFOS and PFOA (1999–2002) (32).
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METHODS

Study population

Project Viva is a prospective pre-birth cohort study in which mothers were recruited between 

1999 and 2002 at their first prenatal visit to one of eight obstetric clinics of Atrius Harvard 

Vanguard Medical Associates, a multi-specialty group practice in Eastern Massachusetts 

(33). Eligible mothers were fluent in English, had singleton gestations, were <22 weeks 

gestation, and had no plans to move away from the study area. Of 2,128 mothers with a live 

birth between November 1999 and February 2003, 1,668 (78%) provided an early pregnancy 

blood sample (median 9 weeks gestation; range 5–19), of which 1,645 had sufficient sample 

for quantification of PFASs. The Institutional Review Boards of participating institutions 

approved all study protocols and all participating mothers provided written informed 

consent. The involvement of the Centers for Disease Control and Prevention (CDC) 

laboratory did not constitute engagement in human subjects research.

Quantification of PFASs and markers of pregnancy physiology

We obtained non-fasting blood samples from women at the recruitment visit, centrifuged 

samples and stored plasma in non-PFAS containing cryovial tubes in liquid nitrogen freezers 

(≤−130° Celsius). In 2014 we thawed, aliquoted and shipped samples to the Division of 

Laboratory Sciences at the CDC where vials were stored at or below −40° Celsius. Detailed 

analytic methods used for PFAS quantification were described previously (34, 35); briefly, 

CDC lab staff analyzed plasma by using on-line solid-phase extraction coupled with isotope 

dilution high-performance liquid chromatography-tandem mass spectrometry and reported 

concentrations of PFOA, PFOS, perfluorohexane sulfonate (PFHxS), and 

perfluorononanoate (PFNA). Reported concentrations for PFOS and PFOA included both 

linear and branched isomers. Low and high concentration quality control materials, prepared 

from a calf serum pool, were analyzed with the study samples, analytical standards, and with 

reagent and matrix blanks to ensure the accuracy and precision of the data. Limits of 

detection (LODs) were 0.2 ng/mL for PFOS and 0.1 ng/mL for the other three PFASs. CDC 

did not report numeric values below the LOD and we imputed these values as the LOD 

divided by the square root of 2 (36).

We sent aliquots of the samples used for PFAS measurements to the Clinical and 

Epidemiologic Research Laboratory at Children’s Hospital Boston (Boston, MA) for 

analysis of markers of pregnancy hemodynamics, including plasma albumin and creatinine. 

These markers have been associated with PFAS plasma concentrations in Project Viva (37).

Fetal growth and length of gestation

Project Viva staff abstracted birth weight (in grams) from hospital medical records. We 

computed birth weight-for-gestational-age and sex z-scores using a U.S. National reference 

(38). We computed length of gestation by subtracting the date of the last menstrual period 

(LMP) from the date of birth. Gestation length was also available from the ultrasound at 16–

20 weeks gestation for approximately 79% of participants. For the 200 births (9%) in which 

gestational length derived from the LMP differed from that according to the ultrasound by > 

10 days, we used the ultrasound to determine gestational duration. Because the clinical 
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relevance of small shifts in gestational duration is unclear, we also examined PFAS-related 

associations with preterm birth, categorized as birth at <37 weeks of gestation.

Statistical analysis

We estimated associations of PFOS, PFOA, PFHxS and PFNA plasma concentrations with 

birth weight-for-gestational-age and gestation length using multivariable linear regression 

models. In secondary analyses, we also estimated associations of PFASs with birth weight 

among term births (≥37 weeks gestation). To examine associations with preterm birth we 

computed odds ratios (ORs) using logistic regression models. Data on covariates came from 

interviews and questionnaires administered during early pregnancy, mid-pregnancy and at 

delivery. We used a Directed Acyclic Graph (DAG) based on a priori knowledge of 

relationships between variables of interest, to identify potential confounders (Web Figure 1).

History of breastfeeding prior to the index pregnancy is an important variable for analyses of 

PFAS data (37) that was not collected in Project Viva. We therefore imputed this information 

using parity and breastfeeding data for the index pregnancy (collected following the birth). If 

the mother was multiparous (regardless of the number of previous births), and breastfed 

following the index pregnancy, history of breastfeeding was coded as “yes”, under the 

assumption that a mother who breastfed this child had a high likelihood of having breastfed 

an older child (39). If the mother was nulliparous or did not breastfeed the current child, 

history of breastfeed was coded as “no”.

All multivariable models included characteristics of the mother (age at enrollment, race/

ethnicity, education, prenatal smoking, parity, history of breastfeeding prior to index 

pregnancy, pre-pregnancy body mass index (weight/height2), gestational age at blood 

collection) and the child (sex). We also included paternal education and household income.

We examined confounding by plasma albumin and GFR, both markers of pregnancy 

hemodynamics (26, 27). Albumin is the main binding site for PFASs as well as a marker of 

plasma volume expansion during pregnancy (40). GFR is a measure of the flow rate of 

filtered fluid through the kidney (31). We estimated GFR (eGFR) (mL/min per 1.73 m2) by 

plugging plasma creatinine into the Cockcroft-Gault (GFR-CG) formula [GFR-CG = (140-

age) × weight (kg) × 1.04/plasma creatinine (μmol/L)]. To examine whether markers of GFR 

and plasma volume were biased among subgroups of women with conditions that could 

influence these markers, such diabetes or hypertension, we conducted a sensitivity analysis 

excluding women with these conditions.

We examined linearity of PFAS-outcome associations by fitting generalized additive models 

(GAM) with a penalized spline term and also by analyzing PFAS plasma concentrations as 

quartiles. We examined sex differences for associations of PFASs with fetal and infant 

outcomes by including an interaction term between sex and PFASs in the multivariable 

model. To account for missing covariate data we used chained equations to impute missing 

values, generating 50 imputed datasets and combining multivariable model results using 

PROC MI ANALYZE in SAS.
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RESULTS

Participant characteristics of the 1,645 live births with prenatal maternal plasma PFAS 

measures are shown in Table 1. Mothers were predominantly white (69%), and at enrollment 

many had high educational attainment (65% with college or graduate degree), most were 

married or cohabitating (91%), and many had high household income (58% with >$70,000/

year), and had never smoked (68%). Table 1 also shows that mothers who were older, white, 

had higher educational attainment, were married or cohabitating, had higher partner 

educational attainment, higher household income, did not smoke during pregnancy, were 

multiparous and had pre-pregnancy body mass index in the overweight or obese range had 

infants with higher birth weight-for-gestational age. These patterns were more or less 

consistent for length of gestation, with the exception of partner education and parity, where 

we did not observe meaningful differences.

Median plasma concentrations of prenatal PFOS, PFOA, PFHxS and PFNA are reported in 

Table 2. PFASs were moderately correlated with each other, with Spearman correlation 

coefficients as high as 0.72 for PFOS and PFOA. Table 2 also shows that PFASs were 

moderately correlated with hemodynamic indicators measured in samples collected at the 

same time as those used to quantify PFASs, including positive correlations with plasma 

albumin (Spearman correlation coefficients ranged from 0.14 to 0.24), consistent with serum 

dilution due to blood volume expansion (higher albumin indicates less dilution, leading to 

higher plasma PFAS concentrations). PFASs were also negatively correlated with eGFR 

(−0.15 to −0.27), consistent with increased flow rate during pregnancy (higher flow rate 

results in more PFAS excretion and therefore lower plasma PFAS concentrations). PFOS, 

PFOA and PFNA were weakly inversely correlated with birth weight-for-gestational age and 

were not correlated with length of gestation (Table 2).

Fetal growth

Table 3 shows associations of PFASs with birth weight-for-gestational-length z-scores. 

Adjusting for traditional sociodemographic covariates attenuated estimates to some degree, 

indicating the presence of positive confounding; this attenuation occurred primarily after 

adjusting for parity (data not shown). Adjusted models show that PFOS and PFNA were 

associated with small decrements in birth weight-for-gestational age z-score [β = −0.04 

(95% confidence interval (CI): −0.08, 0.0 and −0.06 (95% CI: −0.11, − 1) 0.01) per 

interquartile (IQR) increase, respectively]. In secondary analyses (Web Table 1), we also 

found reductions in term birth weight per IQR increase in PFOS [β = −17.9 (95% CI: −40.9, 

5.1)], PFOA [−18.5 (95% CI: −45.4, 8.3)] and PFNA [−28.2 (95% CI: −52.0, −4.4)]. While 

not strictly monotonic, we observed overall decrements in fetal growth across quartiles of 

PFOS, PFOA and PFNA (Table 3 and Web Table 1). Fetal growth associations with PFHxS 

were null.

Gestational length

Associations of PFASs with gestational length followed the same pattern (Table 4) as those 

of fetal growth, with the strongest associations for PFOS and PFNA. When we examined 

odds for preterm birth (dichotomized at birth <37 weeks) we estimated over two times the 
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odds for preterm birth among women with concentrations in the highest vs. lowest quartile 

of PFOS [OR=2.4 (95% CI: 1.3, 4.4)]. Odds of preterm birth were weaker for PFNA and 

null for PFOA and PFHxS (Table 4).

Confounding by pregnancy physiology

Adjusting for eGFR only slightly attenuated associations of PFASs with birth outcomes 

(e.g., PFOS-birth weight-for-gestational age associations attenuated from −0.04 to −0.03) 

(Tables 3 and 4). Estimates were unchanged after adjusting for plasma albumin (Tables 3 

and 4). Excluding women with conditions that could bias markers of GFR and plasma 

volume, including hypertension or diabetes (n=39 women), did not impact effect estimates 

(data not shown).

Sex Differences

We did not observe strong evidence for sex differences in PFAS-birth weight-for-gestational 

age associations (Figure 1A). For gestational length, associations with PFOS were stronger 

among males [β per IQR increase in PFOS=−0.19 (95% CI: −0.33, −0.05)] vs. females 

[β=0.01 (95% CI: −0.11, 0.14)] (interaction p-value=0.09)0.14 (Figure 1B). We found 

similar patterns for PFNA [β=−0.19 (95% CI: −0.33, −0.06) for males vs. β=0.03 95% CI: 

−0.11, 0.16) for females; interaction p-value=0.01]. We did not find evidence for sex 

differences for any other studied associations.

DISCUSSION

This large prospective study measured of PFAS plasma concentrations in pregnant women 

before the U.S. phase-out of PFOS (41) and PFOA (42). As a result, plasma concentrations 

of these PFASs (37), and PFOS in particular, are considerably higher in this cohort relative 

to concentrations reported in more recent U.S. national surveys (43, 44), but similar to 

concentrations in a nationally representative survey with measures during the same time 

period (3).

In this context, we observed modest reductions in fetal growth with higher concentrations of 

PFOS, PFOA and PFNA. Higher PFOS and PFNA concentrations were also associated with 

shorter gestational length, though primarily among males. Associations of PFHxS with all 

birth outcomes were null. Notably, we did not observe confounding by measures of 

pregnancy hemodynamics, including eGFR and plasma albumin.

Gestational exposure to some PFASs has been linked with poorer fetal growth and 

development in animal models (45, 46). Though a direct mechanism for the impact of PFAS 

exposure on fetal growth has not been characterized, structural homology of PFASs with 

fatty acids may induce disruption of lipid metabolism (47), which could interfere with fetal 

growth. PFASs can also alter thyroid hormone levels (48) and activate peroxisome 

proliferator-activated receptors (PPAR) (49), pathways that may influence fetal growth.

Two meta-analysis, one of 9 published studies (20) and another of 7 studies (all of which 

were included in the 9-study meta-analysis) (50), reported an 18.9 (95% CI: −29.8, −7.9) 

and 14.7 g (95% CI: −21.76, −7.8) reduction in birth weight, respectively, per 1-ng/mL 
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increase in serum or plasma PFOA. These associations were considerably stronger than 

those we detected in the current study: converting PFOA estimates per IQR increase (3.8 

ng/mL) in Web Table 1 to per 1-ng/mL increase we found a reduction in term birth weight of 

4.9 g (95% CI: −11.9, 2.2). In addition, the 7-study meta-analysis reported a 5.0 g (95% CI: 

−8.9, −1.1) reduction in birth weight per 1-ng/mL increase in serum or plasma PFOS, 

compared with only a 1.1 g (95% CI: −2.6, 0.3) reduction in term birth weight per 1-ng/mL 

increase in PFOS in the current study (computed using estimates in Web Table 1).

We detected associations of PFNA with birth outcomes in the current study, however, given 

the low plasma concentrations of PFNA in Project Viva compared with other more 

commonly studied PFASs, such as PFOS and PFOA, these results should be interpreted with 

caution. Only a few other studies have examined associations of PFNA with birth outcomes, 

presumably because of the relatively low PFNA concentrations, with mixed findings (9, 13, 

51).

A primary objective of the current study was to evaluate whether adjusting for pregnancy 

hemodynamics impacted PFAS-birth outcome associations. Adjusting for albumin and 

eGFR did not materially alter effect estimates, suggesting that there was little or no 

confounding by these hemodynamic markers. Only one previous study, the Norwegian 

Mother and Child Cohort Study, adjusted for plasma albumin when examining associations 

of PFOA and PFOS measured in early gestation (17 weeks) with birth outcomes (19). This 

analysis also showed no confounding by albumin. We are not aware of any previous studies 

of PFASs and birth outcomes that adjusted for GFR. However, confounding by GFR was 

examined in a study that used simulated data of maternal and cord plasma PFOA and PFOS 

concentrations (50). In contrast to the current study, this simulation study observed 

considerable confounding by GFR of the PFAS-term birth weight association, with strong 

attenuation of both PFOA and PFOS-related associations with term birth weight after 

adjusting for GFR. One explanation for these conflicting findings is that plasma samples in 

Project Viva were drawn early in pregnancy, when pregnancy hemodynamic changes are just 

beginning. We speculate that this confounding may therefore only be present in studies in 

which blood is drawn later in pregnancy. This is further supported by the previous literature, 

where studies with the strongest reported PFOA-birth weight associations measured PFOA 

in cord serum at birth (7, 52), while studies with weaker birth weight associations measured 

PFOA in early pregnancy (first trimester or early second trimester) (6, 8, 19, 21). The 

suggestion that confounding by eGFR has less influence when PFOS and PFOA 

concentrations are measured in early pregnancy is also supported by simulated data (50).

Although a cohort with blood samples drawn late in pregnancy (second or third trimester) 

might best reveal the extent of potential confounding by plasma volume expansion and GFR, 

our results do suggest that studies that examine associations of birth outcomes with PFASs 

in serum/plasma drawn early in pregnancy are unlikely to be substantially confounded by 

pregnancy hemodynamics.

When we compare our birth weight results (Web Table 1) to four studies that measured 

PFASs in early pregnancy (9–17 weeks) (6, 8, 19, 21), as these are likely to be the 

associations that are least confounded by pregnancy hemodynamics, we find some 
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consistency across individual PFASs. For example, the four studies find that a 1 ng/mL 

increase in PFOA is associated with a reduction in birth weight of 11 to 34 grams, whereas 

in our study we report a 19 gram reduction in birth weight (Web Table 1). However, these 

previous studies observed null associations of PFOS with birth weight, while we observed 

associations for PFOS that were comparable to our PFOA associations. One previous study 

reported lower birth weight with exposure to PFHxS (8), though our study and another 

previous study (21) found null associations.

A limitation of our analysis examining confounding by pregnancy hemodynamics is that we 

used markers measured in early pregnancy plasma: creatinine for GFR and albumin for 

plasma volume expansion. Whether these markers adequately represent pregnancy 

hemodynamics is unclear. Confounder measurement error would have resulted in residual 

confounding when controlling for these variables in multivariable models. However, given 

that we observed minimal attenuation when we included these markers as covariates, we 

would not expect residual confounding to completely account for our observed associations.

This study had a number of strengths. We had a large sample size with participants recruited 

before the voluntary phase out of PFOS and PFOA, and thus during the time of likely peak 

exposure to these PFASs in the United States (32). We also adjusted for key confounders, 

including parity, sociodemographic factors and pregnancy hemodynamics.

In conclusion, concentrations of early pregnancy PFOS, PFOA and PFNA were inversely 

associated, albeit modestly, with fetal growth and length of gestation in Project Viva. These 

findings, in a population enrolled when exposures to PFOS and PFOA were likely at their 

peak in the United States, are consistent with other studies showing weak inverse 

associations of PFOS and PFOA measured early in pregnancy with fetal growth. 

Measurement of PFASs in early pregnancy in future studies may avoid confounding by 

pregnancy hemodynamics. Studies that measure PFASs in later pregnancy, however, should 

consider adjusting for markers of pregnancy hemodynamics.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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eGFR estimated glomerular filtration rate

GFR glomerular filtration rate

PFASs perfluoroalkyl substances

PFHxS perfluorohexane sulfonate

PFNA perfluorononanoate

PFOA perfluorooctanoate

PFOS perfluorooctane sulfonate
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Figure 1. 
Associations of prenatal plasma concentrations of PFASs with A) fetal growth (birth weight 

for gestational age) z-score (n=1,644) and B) gestational length (weeks) (n=1,645), stratified 

by sex and adjusted for maternal age at enrollment, race/ethnicity, education, prenatal 
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smoking, parity, history of breastfeeding, pre-pregnancy BMI, paternal education, household 

income and gestational age at blood draw, for participants of Project Viva.
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